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CONSIDERATIONS ON THE EFFECT OF WIND-TUNNEL WAILS ON

OSCILLATING AIR FORCES FOR TWO-DIMENSIONAL

SUBSONICCOMPRESSIBLEFLow

By Harry L. Runyan and Charles E. Watkins

This paper treats the effect of wind-tunnel w&Lls on the oscillating
two-dimensional air forces in a compressible medium. The walls are simu-
lated by the usual method of placing images at appropriate distances

● above.and below the wing. An important result shown is that, ~or “certain
conditions of wing frequency, tunnel height, and Mach .nriniber>’the tunnel
and wing may form a resonant system so that “theforces on the wing are

.-.—

e greatly changed from the condition of no tunnel walls. It is pointed
out that shnilar conditions exist for three-dimensional flow in circular
and rectangular tunnels and apparently, with@ certain Mach number ranges,
in tunnels of nonuniform cross section or even in open tunnels or jets.

INTRODUCTION””
,.

.-. . . .

The understanding of flutter and other nonsteady phenomena requires
a lmowledge of the associated unsteady flow. In”the underlying theories
of unsteady flow, such assumptions as small displace”inents,linearization,
and an inviscid fluid are made in order to obtain workable and usable
results. When it is necessary to investigate the effect of these assump-
tions on analfi$cal results by measurements of the forces and moments-on
an oscillating wing in a wind tunnel or to treat cases that do not con-
form to theory, the question of the effect-of th~.t~el walls naturally
arises. In the case of staady flow the problem of the effect of tunnel
walls is more or less classic and has been treated-by many investigators. .
In general, these investigators have been able to ob@~ relatively simple
factors which can be used to modify measurements of the”air forces on a
- in a t~el to correspond to free+.ir con~tions. The extension
of the results to co~ressible flow presenl% no di.fficiiltiessinc”ethe
results

. Glauert

.

for incompressible flow can be corrected accor@g to Prandtl-.
correction factors.
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In the case of unsteady flow, Reissner, reference 1, and W. P. Jones,
reference 2, have published papers showing the effect of wind-tunnel walls .
for the incompressible case. In both papers, the influence of the tunnel
walls is,found to be comparatively small for most cases, although indica-
tions are given that, for some ranges of a reduced-frequency parameter,
the effect may be quite large. .In the unsteady case, unlike the steady
case, the transition from results for ticompressible flow to those for
compressible flow cannot be accomplished by simple transformations. Thi8
difficulty is a result of the fact that, in an incompressible fluid, the
velocity of propagation of a disturbance is infinite and no time lag
occurs between the hitiation of a disturbance and its effect at another
position in the field, but, in a compressible fluid, a definite time is
required for a signal to reach a distant field point so that both a phase
lag and a change in magnitude result. Under certafi conditions this
phase lag can result in a resonant condition which would involve large
corrections.

.

The purpose of this paper is to consider the effect of wind-tunnel
walls on the forces on an oscillating airfoil of infinite span with con- W

siderations of the compressibility of the fluid. ‘he usual method of
images is employed im order to satisfy the condition of no normal velocity
at the tunnel walls. First, the effect of tunnel walls on the jnduced “

vertical velocity, hereinafter referred to as downwash, of an oscillating
doublet is determined and this result is used to formulate the integral
equation for the downwash of an oscillating airfoil in a tunnel. This
paper is not intended to give numerical values or any detailed calcula-
tions of final tunnel-wall correction factors but mainly to show the
existing need for such calculations and to present equations for calcu-
lating corrections for the two-dimensional case.

SYMBOLS

A constant

b semichord

c velocity of sound

H tunnel height

%(2), HI(2) Ha&el functions

M Mach number

Ap local pressure difference

“

.
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t time
--

v

Y

(m

P

velocity

downwash or.vertical induced velocity

Cartesian coordinates

Eulerls constant

angular frequency

wave length

acceleration potential

velocity potential

fluid density

ANALYSIS

Effect of Tunnel Walls on the Downwash of a Stigle Doublet

.-

The differential equation that governs flow due to small nonsteady
perturbations imposed on a steady, uniform flow field is the wave equa-
tion. Referred to rectangular coordinates, fixed relative to the undis-
turbed stream at infinity, this equation is

(1)

In this equation the independent variable $ may be regardedas either
a perturbation velocity potential or as an acceleration potenttil. In
treating the boundaqy conditions of the second section of this analysis“
it is convenient to regard v as an acceleration potential. Thus, in
order to be consistent, V is hereinafter regarded as an acceleration --
potential. Accordhgly w is tiectly proportional to a perturbation



pressure field and is therefore related to a perturbationvelocity
potential q as follows:

“-

.-

(2)

a~
In order to calculate-thedotiwash w = ~ associated with ~, it is

necessary to solve equation (2) for p in terms of jr.

When ~ and q) are sinusoidal functions of time, such that

~x,y,t) = eiat~x,y) 1

equation
with one

. q(x,y,t) = eiut~(x,y)
1

(2) becomes independent of
dependent variable, namely

T=*

(3) .

time and thus reduces to an equation ■

—

+
..

(4)

This equation can be integrated with respect to x to give

(5)

where the lower limit of integration is chosen for later convenience so
that q vanishes far ahead of the point of disturbance. The downwash
may be readily calculated with the use of this equation. In the absence
of tunnel walls the retarded potential ~ (that is, the potential corre-

sponding to outgoing waves) of a harmonically pulsating pressure doublet
located, for simplicity, at (0,0) that satisfies equation (1) is

..-

.-
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() L‘t+$& ~ e
- ~~x~

‘!0 = -Ape dz
“G X2 + pzyz + j32z2 .

-m

--

where %(2) and Hi(2) are Hankel functions as defined in reference 3,
A is an arbitrary constant denoting doublet strerigth~o is c~c~ar.

frequency, and ~ = ~~. The Hankel function H1(2~ in equation (6)

(becomes infinite as

)

as its argument approaches zero. Other-

+ 2Y2

wise Hi(2) is continuous and approaches zero as its argument approaches -_
infinity. Thus the only &continuity h ~ is at the location of the
doublet, that is, at (-,@).

In the presence of plane tunnel walls located parallel to the x-axis
at ./2 Units’abme and H/2 units below the doublet position, the
poten~ial v of a pressure”dotilet may be represented bY the potent~l -
of an infinite system of appropriately chosen
(see fig. 1)

reflecting doublets, namely

—

J2 -i-$qy - nH)2 (7)

= O is the potential ~,In this equation the term corresponding to n

equation (6), discussed in the preceding paragraph. It may be noted that
only this term of the infinite summation in equation (7) gives rise to a

(
discontinuity in ~ at any point within the tunnel - ~~~, ~ <x<= .

)

. .—.— —.
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The infinity of

the downwash w
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terms corresponding to n + O are necessary to cause

to vanish at all points of the tunnel walls, y = ~.
L

The downwash along the midsection of the tunnel y = O is given by

()Lot-;

/

x .

w=Anie
lti ~ (-l)ne% -Z H$2)

[’ 1~E2+~2(y-r@2dt
T y+o n=-~ *2 Cp2

-m

O+w=-w 1 (8)

. .
where

.

represents the downwash associated with the pressure doublet in the
absence of tunnel walls and

()km-: 1%-
iq

2Aplrie
WI = MM

v n= (-l)evP2 2 42)
y-w $

IJ.m

(9)

—

(lo)

represents the additional downwash due to the presence of tunnel walls.
Thus the relative value of W. as compared with wo + W1 is the main
item of interest here.

The integrals appearing in equations (9) and (10) can be reduced to
simpler form for evaluation but since the steps required to reduce one

.
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.

of the fitegrals are the same as required to reduce the other> only
the titegral appearing in equation (9) will be treated in detail. The
reduced form of the other integral can then be obtained by simple com-
parison. The .ankel function in equation (9) satisfies the followirig
identity:

(U)

Substitutfig this relation into equation (9) gives

U-m

u -m

In equation (12)
give for wo

wo.- * 1~

y +0

k~

the first integral

()icbt-$

[-

iax

e co Vpz~e--

W%F($F-) +

(12)

-1

can be integrated twice by parts to

.“

(13)
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By writing the integral in equation [13) as the sum of two integrals,
namely *

J/r
o

= i-

-m -m 0

and making a change of variable

the expression for W. may be

d
—=11
~p2

further reduced to

(i$)

(u)

~2~eiu.(2)lj/’-]d] (16)

&

.

.-

In the limit y = O the expression in braces in equation (16) reduces
to the kernel of Possiois integral equation relating p.ress~e and down-
wash for the.oscillating airfoil in compressible flow. (This result
checks the results for this expression given, for example, in reference 4.)

.
.
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!Chevalue of the integralsh equation(10) may be similarity reduced to give

L?

+
.

(17)

U3

I
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In general, this

converges to a fhite
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.

infinite-series representation of wl, equation (17), —
value. However, for certain critical values of the

frequency parameter &/V, it is found that the value of W1 becomes
infinite. This fact can be readily made evident by use of relations
given in reference ~ where it is shown that an infinite series of Hankel
functions of the type appearingin equation (17) can be replaced by an
equivalent series of exponential functions as fo~ows:

L- -J

t).-: (’)E&+i2‘Ho ‘H V M

/(92-(3’

j_J>le +

.

‘i=%m ’18)
It maybe seen that; if this relation is substituted into equation (17)3
the value of WI becomes infinite for all values of x when the fre---

quency parameter mH/V has any of the values given by -

*=(2m -1)* (ITI=l ,2,3,...) (19)

.

—

.

+

.

b

.
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These critical values of the frequency parameter correspond to a condi-
. tion of pure resonance in the tunnel which in the present case tiplies”

that a harmonic disturbance of any finite amplitude may lead to a down-
wash of infinite amplitude.

Of course these infinite values of w, would never be realized
under practicable conditions because facto~s such as finite tunnel length,
absorption through walls, fluid viscosity, and so forth that would giye
rise to damping would make pure resonance unobtatible; however, with

—-

damptig present, resonant frequencies yielding values of d3/V h the
neighborhood of those given in equation (19) would exist-and”it is not
likely that quantitative agreement or even possibly qualitative agreeti=
between calculated and measured downwash (or forces) can be realized when
the value of &/V is in the neighborhood of these critical values.

It is titeresttig to note that the effect of boundary conditions
such as section geometry, tunnel-wall flexibility, and so forth is to

.-

change the value of the critical frequency-but not to do away with the
. possibility of resonance. Also, by treatments s~ar”to those employed

herein, it can be shown that under idealized conditions resonance can
occur in three-dimensional flow in both round and rectangular tunnels or

. apparently, within certain Mach number ranges, in tunnels of nonunifom
cross section (expanding or contracting section) or even in open ttiels
or jets.

.=.—

The fundamental or smallest critical values of &/V, corresponding
to m= 1 in equation (19), are shown plotted as functions of Mach num-
ber M in figure 2. This figure indicates that there is no finite
critical value of &/V for the conditions M=O, V~O,and c=~~-
which correspond to a flow of incompressible fluid in the tunnel. This
result agrees with those found in references 1 and 2.

The frequency parameter

(m=l,2,3, ...) (20)

which may be derived from equation (19) is shown plotted for m = 1,
as a function of Mach number in figure 3. Equations (20~ and figure 3
show that finite values of the critical frequency etist for the condi-
tions M = O, V = O, and c ~~. These conditions correspond to a com-
pressible fluid at zero “velocityin the tunnel. For these conditions
eqyations (20) and the corresponding wave lengths

.-
-,

2mc 2H
A=—=—

2m-1
(m=l,2,3, ...) (21)

a
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agree, respectively, with results found in the literature for the char-
acteristic frequencies and wave lengths associated with transverse
acoustic vibrations in rectangular chambers when the location of the
source of disturbance is excluded as a nodal point. See, for example,
reference 6.

It may be of interest to note that equation (20) can be derived
from the principle of standing waves as follows:. The condition for
resonance for the type of disturbance considered implies that the
standing transverse waves have a maximum velocity at the midsection of
the tunnel and zero velocity at the.boundaries. A half-sine wave of
wave length X = 2H or any odd divisor of this length, namely,

2H
‘=2rn-l

satisfies this condition. If c is the velocity bf sound

in the medium and V the velocity o~-the medium, the velocity of pro-
pagation of a disturbance in a fixed plane perpendicular to the air flow

is ~. Since the fraquency is given by the speed of propagation
divided by the wave length there is obtained .6.–

.

.

f=
(2m - l)#c-

2H

or

CM— = lr~(2m- 1)
c

Integral Equation for an Airfoil of

Ratio Oscillating in a Wind

In order to present equations from which

ale—
=.

2n

Infinite Aspect

Tunnel

tunnel-wall corrections
for two-dimensional flow can be calculated, use is made of the foregoing
analysis to derive the integral equation, relating downwash distributions
and lift distributions, for the effect of tunnel walls on the lift dis-
tribution associated with a given downwash distribution.

The resultant pressure or local lift Ap associated with the accele-
ration potential of a single doublet located at (~,0) with strength

depending on streamwise position ~ may be expressed simply as (compare m
with equation (6)):

.
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where A(w) denotes local dotilet strength or lift density. The downwash due to a distribution

of such doklets between xo = -b and ~ = b is

J’(w)e-%(xm)%r

-2pti Jmt ~
W(x,t) = ~

For a given value of the lift density A(%), this equation detemines the dounwash. For a

given or prescribed expression of w(x,t), the distribution of lift density nrust be determined.

Thus, in this casej equation (23) is a formof Possiols integral equation relating downwash and

pressure for an airfoil. oscillating in compressible flow. In Passing itmaybewell to point

out that Possio$s equation has not yet been solved in closed form but has bee? eva}uated by

different methods of approximation by seveml authors. Reference 4 gives a resume of these

methods of approximation.

For an airfoil @ide a two-dimensioml tunnel ‘& Mlationbeiween downwash and local lift

becomes (compare with equation (8) )

P
w

,’
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(,4)

d-

For a given value

the corresponding

of lift density A(w), this equation determines the effect of tunnel walls on

downwsh . For a given downwash distribution, the more pertinent effect of

tunuel walls on the distribution of lift density is obtained~ comparing the solution of equa-

tion (23) with the solution of equation (~). In either case the summationin the second integral

h braces in equation (24) is the same summation that was found in the prpceding section to have

critical values of the frequency pammeter &/V that cause the summation to become infinite.

Consequently, evaluations of equation (24) for values of tie frequency parameter in the neighbor-

hood of these critical values would lead ta the same resonant effects found h the treatment of
a s5ngle doublet. Otherwise, for values of the frequency parameter not too near critical values,

it is proposed that a fairly close approximation to solutions of equations (23) and (~) for

effects of tunnel ~lls on lift density (or LUt) will generally yi.el.dresults from which tunnel-

wall correction factors for two-dimensional flow can be obtzlned. Expressions from which correc-

tion factors for three-dimensional flow canbe obtained maybe similarly derived when the down-

wash of a three-dimensional pressure doublet Is employed instead of the downwash of a

two-ctimensioml pressure doublet.

It appears desirable to solve equations (,3) and (,4) by collocation or sores other approxi-

mate method to obtain tunnel-wall corrections for ~ome particular cases of prescribed downwash

and to determine experimentally the range, if any, of frequency parameter in fich quantitative

results can be obtajned for these cases.

. , .
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CONCLUDING REMARKS

15
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.

The important result shown is that, in a tunnel of infinite length
containing a flowing fluid, a resonant condition involving a transverse
oscillation of the fluid across the tunnel is possible and measured ah
forces at or near this condition of resonance might be greatly modified
from those measured in free air. This resonant condition is a (simple)
function of Mach number, tunnel height, and @g frequency and brings to
attention a new type of tunnel-wall interference.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., September 24, 1951
-.
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Figure 1.- Sketch shotiihgreflecting system of doublets simulating
two-dimensional tunnel walls.
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